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_ Abstact Architecture

To address e>.<|st|ng challenggs on Large Langugge Modgls or.m codg generation Our system Fon5|sts the Retrieval Augmented Generation (RAG) System and a Our RAG database is constructed by subset of large python code dataset, with
task.s and to |m!orove the reliability of ge.neratlve code, in this project, yve code execution §ystem. The RAG consists of a query encoder, a vector natural language descriptions. Here is a summary of dataset that vector
designed a rgtrleval augmgnted generation (RA(?) based code generatmn database, a retriever, a reranker and Code Llama. database is subsets on.
system, that incorporates in system code execution and evaluation, and
regeneration of code in case of error. The RAG database is constructed by The encoder is to encode the natural language query input, and prepare for Dataset Description
large python code dataset. In this project, we incorporated Code Llama as the retrieval process in the vector database. The retriever is retrieve top closely CodeNet Project CodeNet is a large-scale dataset with approximately 14 million code samples,
generative model as well as the benchmark for experiments. Experiments are related documents, after reranking, prompts are then constructed by the 2ach of which s an intended solufion fo one of 4000 coding problems.
conducted based on two testing datasets of python code, and results are question and retrieved python code as reference. Prompts are fed to code Codestn Python dataset with 20000 question-answer pairs, including signature, docstring, body
compa red Wlth the benckmark. ||ama for code generation. Codalboriasic It consists of programming problems including test cases in the form of paired inputs and
outputs, as well as both correct and incorrect human solutions in a variety of languages.
_ _ Code¥tins CodeXGLUE includes a collection of 19 tasks across 1.4 datasets and
Followed by the RAG, we constructed a code execution system, this allows a platform for model evaluation and comparison.
Introduction evaluation ofthe OUtpUt code generated by the 1 LM after retrieval by CodeNal a 23?9 training and 500 test examples manually-annotated. and 598,237 mlned mtent-s.,nlppet
executing the python Code Error messages Jre Collected and may be fed pairs. Every example has a natural language intent and its corresponding python snippet.
Intersec.tlon. of natural Language p_r(?fcess'gg (NFP) an;l progr;mmllng code back to the LLM and are incorporated in the prompt for regeneration. The
generation |_s a researc area.cruaa or. advancing software deve opment upper limit of regeneration is decided by user.
and enhancing how humans interact with computers. It focuses on using
large Ianbg?uagi| mo_del-s (LLMs)dto mtsrpret Plluman Iar;]guage gnd prodgce We also adapted unlimiformer, a sliding windowed attention based We evaluated our RAG on code generation tasks using benchmark datasets
execrL]J.ta € cOde, diming toreduce th ©9ap e];cweenh ulrwan mtenthan transformer that accepts unlimited length of input, for the generative mode], HumanEval and MBPP, and compared the result with CodelLlama-Python-7b
machine aﬁtlon. Desplte]c p;ogress, t edsectdor aces challenges suc TZ in order to avoid the issue when prompt gets very long under the previous produced. We choose evaluate pass@1 and pass@10 for HumanEval and
ensuring the dccuracy o the generate cOdE, mcorporatl-ng external data mechanism. Architecture of our system detail is shown below. MBPP. Results are shown below.
sources, and ensuring the models' effectiveness across different
programming challenges. Modcl HumanEval MBPP
S o o RAG Based Code Generation with Unlimiformer : _ P‘””{TI pEN@ 10 Jene] penei
Our project is situated within this area of research, inspired by recent CodcLlama7b - Reproduction 353% 64.6% 44.7%  66.9%
developments but also recognizing the challenges inherent in generating . CodeLlama’d - Reporied & Feper A% % 4168 NI%
de from natural lan descriotions. The obiective is to enhance th ‘ ‘ Query ‘ RAG-Based, CodeLlama7b 83% 668% 43.1% 65.1%
code O_ dtUral language descriptions. The objective 15 to enhance the O . =~ ==+ U RAG-Based, ErrMsg, Codellama7b 38.5% 40.8%
generation of Python code from natural languages. netrasial pugmented | e RAG-Bascd, ErrMsg, Unlimiformer, CodeLlama7b
: .. : : (Errnr Message
We replicated the findings of the seminal work by Code Llama, which sets a @ = v L = ]‘ ;
. . : Encnder> o E N\ i
benchmark of this project. Our test on code llama with some prompts shows N CodeLlama
it insufficient performance some code generation task, that the output code /L mimorme) | N
build on top of code llama, and is to improve the generated code quality and  Vector e i e Ger:;r;;ed > xecute We h | f f e the RAC ; .
validity Database | ) | fonelong : L , e have a increase of pass rate after adding the system on HumanEva
| - || e e )| | - | dat ing with Codell ithout RAG, showing th |
; e a y g ataset comparing with Codellama without , showing that our system is
kNN ! E : .« . .
Subsequently, we plan to integrate the principles of Retrieval-Augmented \T N )| to a extent efficient. Where after adding BAG, pass r.a:ce decr.eased fcf)r MBPP,
Generation (RAG) into the Code Llama framework. RAG, by leveraging a vast | | - T _4 ) prol.oably dug to d.atabase does not contain enough information usetul to
repository of code snippets and documentation, introduces an external Retrieved 2 ~ Code coding questions in MBPP.
: : : Cop Documents " Reranker | ¥ Output §
knowledge dimension to the model, potentially enriching the generated L e \ J - _ c
code's accuracy, relevance, and efficiency. Followed by the RAG, we Addmg Error m?ssagfe eedback system O.IS_T.S nf)t create observadble
Constructed a COde exeCUt|On SYStem, th|S a”OWS evaluat|on Ofthe OUtpUt T ——— Umlmmmerhmhltemur&Referenmdzaﬂﬁmﬁzﬁiamwnm) |r|nproven;|en'::$ per‘ Orma:tclf ?ne fOSSI I |ty IS error message oes not
code generated by the LLM after retrieval by executing the python code. We ar\]/vays retiec :cui.error.o e.”ubnc |o|n. - atah
conducted evaluation on our system after its construction. The architecture he ne>ft step ot this project wi e en _arg_]'cng the vector database, re-
of our system is shown in next section. evaluating the systems, and adding unlimiformer to the model.
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