
Retrieval-Augmented Generation Based Code Generative System with Unlimiformer
Chuangji Li, Shizhuo Li, Alan Wang

{chuangjl, shizhuol, minyangw}@andrew.cmu.edu

Chuangji Li, Shizhuo Li, Alan Wang
{chuangjl, shizhuol, minyangw}@andrew.cmu.edu
Carnegie Mellon University
Pittsburgh , PA, 15213

Contact
1. Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian

Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. 2024. Code llama: Open foundation models for
code. [2308.12950] Code Llama: Open Foundation Models for Code (arxiv.org)

2. Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew R. Gormley. 2023. Unlimiformer: Long range transformers with unlimited length input. [2305.01625] Unlimiformer: Long-Range Transformers with Unlimited Length Input
(arxiv.org)

3. Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng Yin, Anthony Tomasic, and Graham Neubig. 2018. Retrieval-based neural code generation. [1808.10025] Retrieval-Based Neural Code Generation (arxiv.org)

References

To address existing challenges on Large Language Models on code generation
tasks and to improve the reliability of generative code, in this project, we
designed a retrieval augmented generation (RAG) based code generation
system, that incorporates in system code execution and evaluation, and
regeneration of code in case of error. The RAG database is constructed by
large python code dataset. In this project, we incorporated Code Llama as the
generative model as well as the benchmark for experiments. Experiments are
conducted based on two testing datasets of python code, and results are
compared with the benckmark.

Abstract

Introduction

Our system consists the Retrieval Augmented Generation (RAG) System and a
code execution system. The RAG consists of a query encoder, a vector
database, a retriever, a reranker and Code Llama.

The encoder is to encode the natural language query input, and prepare for
retrieval process in the vector database. The retriever is retrieve top closely
related documents, after reranking, prompts are then constructed by the
question and retrieved python code as reference. Prompts are fed to code
llama for code generation.

Followed by the RAG, we constructed a code execution system, this allows
evaluation of the output code generated by the LLM after retrieval by
executing the python code. Error messages are collected and may be fed
back to the LLM and are incorporated in the prompt for regeneration. The
upper limit of regeneration is decided by user.

We also adapted unlimiformer, a sliding windowed attention based
transformer that accepts unlimited length of input, for the generative model,
in order to avoid the issue when prompt gets very long under the previous
mechanism. Architecture of our system detail is shown below.

Architecture
Our RAG database is constructed by subset of large python code dataset, with
natural language descriptions. Here is a summary of dataset that vector
database is subsets on.

Database

We evaluated our RAG on code generation tasks using benchmark datasets
HumanEval and MBPP, and compared the result with CodeLlama-Python-7b
produced. We choose evaluate pass@1 and pass@10 for HumanEval and
MBPP. Results are shown below.

Experiment

Intersection of natural language processing (NLP) and programming code
generation is a research area crucial for advancing software development
and enhancing how humans interact with computers. It focuses on using
large language models (LLMs) to interpret human language and produce
executable code, aiming to reduce the gap between human intent and
machine action. Despite progress, the sector faces challenges such as
ensuring the accuracy of the generated code, incorporating external data
sources, and ensuring the models' effectiveness across different
programming challenges.

Our project is situated within this area of research, inspired by recent
developments but also recognizing the challenges inherent in generating
code from natural language descriptions. The objective is to enhance the
generation of Python code from natural languages.

We replicated the findings of the seminal work by Code Llama, which sets a
benchmark of this project. Our test on code llama with some prompts shows
it insufficient performance some code generation task, that the output code
may be not valid, may not compile or execute correctly. Our project is then
build on top of code llama, and is to improve the generated code quality and
validity.

Subsequently, we plan to integrate the principles of Retrieval-Augmented
Generation (RAG) into the Code Llama framework. RAG, by leveraging a vast
repository of code snippets and documentation, introduces an external
knowledge dimension to the model, potentially enriching the generated
code's accuracy, relevance, and efficiency. Followed by the RAG, we
constructed a code execution system, this allows evaluation of the output
code generated by the LLM after retrieval by executing the python code. We
conducted evaluation on our system after its construction. The architecture
of our system is shown in next section.

We have a increase of pass rate after adding the RAG system on HumanEval
dataset comparing with Codellama without RAG, showing that our system is
to a extent efficient. Where after adding RAG, pass rate decreased for MBPP,
probably due to database does not contain enough information useful to
coding questions in MBPP.

Adding Error message feedback system does not create observable
improvement of performance. One possibility is error message does not
always reflect true error of the function.
The next step of this project will be enlarging the vector database, re-
evaluating the systems, and adding unlimiformer to the model.

Discussion

https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2305.01625
https://arxiv.org/abs/1808.10025

